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Abstract— Accurate and up-to-date road maps are of great
importance in a wide range of applications. Unfortunately,
automatic road extraction from high-resolution remote sensing
images remains challenging due to the occlusion of trees and
buildings, discriminability of roads, and complex backgrounds.
To address these problems, especially road connectivity and com-
pleteness, in this article, we introduce a novel deep learning-based
multistage framework to accurately extract the road surface and
road centerline simultaneously. Our framework consists of three
steps: boosting segmentation, multiple starting points tracing,
and fusion. The initial road surface segmentation is achieved
with a fully convolutional network (FCN), after which another
lighter FCN is applied several times to boost the accuracy
and connectivity of the initial segmentation. In the multiple
starting points tracing step, the starting points are automatically
generated by extracting the road intersections of the segmentation
results, which then are utilized to track consecutive and complete
road networks through an iterative search strategy embedded in a
convolutional neural network (CNN). The fusion step aggregates
the semantic and topological information of road networks by
combining the segmentation and tracing results to produce the
final and refined road segmentation and centerline maps. We eval-
uated our method utilizing three data sets covering various
road situations in more than 40 cities around the world. The
results demonstrate the superior performance of our proposed
framework. Specifically, our method’s performance exceeded the
other methods by 7% and 40% for the connectivity indicator for
road surface segmentation and for the completeness indicator for
centerline extraction, respectively.

Index Terms— Convolutional neural network (CNN), remote
sensing images, road extraction, segmentation, tracing.

I. INTRODUCTION

ACCURATE and up-to-date road maps are of great
importance in a wide range of applications, includ-

ing urban planning, disaster management, vehicle navigation,
and autonomous driving. Until now, time-consuming and
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labor-intensive manual work has been necessary to construct
and update high-quality road networks. Thanks to the recent
rapid development of Earth observation and remote sensing
technology, though, considerable attention is being given to
extracting roads automatically from high-resolution remote
sensing images. Deep learning techniques, in particular, which
have been successfully applied to image classification, seman-
tic segmentation, object detection, and many other tasks in
computer vision, offer a promising avenue for automatic
road extraction from remote sensing images. However, the
complex backgrounds of remote sensing imagery can cause
the road extraction to suffer, such as overlapping of viaducts
and occlusion of trees and tall buildings. Additionally, some
land covers, such as bare soil, parking lots, and rivers, may
share similar textures and structures with roads, making them
difficult to discriminate. All these situations have prevented
achieving automatic high-quality road extraction from remote
sensing imagery.

During the past few decades, a variety of road extraction
approaches have been advanced from different viewpoints,
which can be generally divided into two categories, road
surface segmentation and road centerline extraction. On the
one hand, road surface segmentation mainly aims to produce
a binary mask map where each pixel is labeled as either road or
nonroad. On the other hand, road centerline extraction focuses
on the topology and connectivity of road networks, which is
commonly conducted by line tracking or thinning from road
mask maps.

Conventional statistics and machine learning methods, such
as artificial neural network (ANN), support vector machine
(SVM), and maximum likelihood (ML), have been widely
utilized in road surface extraction. For example, Kirthika
and Mookambiga [1] applied ANN to extract road surfaces
from satellite images using the texture and spectral infor-
mation. Das et al. [2] proposed a multistage framework that
includes four probabilistic SVMs and a series of postprocess-
ing methods to extract roads from multispectral satellite
images. Ünsalan and Sirmacek [3] proposed a framework
to estimate road centerlines and a graph-based network to
refine road segments. Wegner et al. [4] proposed a higher
order conditional random field (CRF) [5] model to detect road
network.

Recently, convolutional neural networks (CNNs) [6]–[9]
have become prominent in semantic segmentation of visual
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images. After Long et al. [10] proposed a fully convolutional
network (FCN), which achieved pixel-wise segmentation by
replacing fully connected layers with convolutional layers in
a CNN, other FCN structures have been extensively stud-
ied, such as DeconvNet [11], SegNet [12], U-Net [13], and
DeepLab [14], [15], for pursuing better semantic segmentation
performance in close range and medical images.

Inspired by the successful applications of deep learning
methods in semantic segmentation, some studies have intro-
duced CNNs, especially FCNs, into road surface extrac-
tion. The network proposed by Mnih and Hinton [16]
included millions of neurons to extract features represent-
ing roads. Zhong et al. [17] applied an FCN to extract
roads and buildings from remote sensing images simultane-
ously. Panboonyuen et al. [18] presented a deep convolutional
encoder–decoder network for road detection, followed by a
CRF [5] to increase the spatial accuracy via filling gaps
between road segments. Zhang et al. [19] combined a residual
network with U-Net, which reduced the number of training
parameters. He et al. [20] integrated the Atrous spatial pyramid
pool (ASPP) [21] with the encoder–decoder network to extract
fine features of roads. Yang et al. [22] designed a recurrent
CNN (RCNN) unit to explore detailed low-level spatial char-
acteristics. Zhou et al. [23] developed an encoder–decoder
network named D-LinkNet, which consists of LinkNet [24]
and dilated convolution [25]. Zhang and Wang [26] combined
an efficient dense connection [27] with dilated convolution
layers for a large receptive field.

As it is challenging to extract road centerlines directly from
remote sensing images, most of the conventional centerline
extraction methods to date [28], [29] are implemented by two
steps: road surface detection and road centerline extraction.
Huang and Zhang [30] presented a framework for road center-
line extraction by integrating multiscale information with an
SVM. An integrated method for urban main-road centerline
extraction was introduced by Shi et al. [31], which incorpo-
rated spectral–spatial classification, local weighted regression,
and tensor voting. Mattyus et al. [32] estimated road topol-
ogy assisted by the initial segmentation results and inferred
the missing connections based on the shortest path search
algorithms. Cheng et al. [33] proposed cascaded networks to
predict road surface and centerline segmentation maps; how-
ever, their centerline extraction was determined by the road
segmentation. Lu et al. [34] presented a multitask learning
framework which contained a road surface extraction network
and a road centerline extraction network in parallel modes
where both subtasks were limited in the pixel-wise segmen-
tation level without considering any topological or structural
information.

More recently, a few CNN-based studies have been intro-
duced in road centerline tracing from remote sensing images,
which were proved to significantly improve the accuracy.
Ventura et al. [35] designed a CNN that predicted local con-
nectivity between the central pixel and the border points of an
input image patch and inferred the global topology of road net-
works by iterating this local connectivity. Bastani et al. [36]
proposed a CNN-based iterative search method called Road-
Tracer to construct road network graphs from aerial images.

Starting from a given point on the road, the decision was made
between stepping back to the previous node and walking a
fixed distance at an angle inferred by the CNN.

Although remarkable improvements have been made in
road extraction by recent deep learning-based approaches,
the problem is far from solved. Segmentation methods, such
as the most recent D-LinkNet [23], can detect most of the
road surfaces but produce poor connectivity results due to their
neglect of the structural and topological information about the
road. The situation is similar for two other methods [33], [34],
which output road centerlines only through segmentation.
On the other hand, tracing methods can preserve road con-
nectivity better but may lack of completeness as the search
is affected by the conditions of the starting and currently
traced points. The most recent RoadTracer [36] only tracks
a road network graph from one given starting point, which
lacks automation and inevitably results in incompleteness in
complicated scenes covering isolated roads. The problem to be
addressed at this point, therefore, is how to combine the road
features extracted by segmentation and tracing methods to con-
strain each other and benefit their complementary advantages.
The novel framework we present in this article does indeed
address this problem. Our approach is based on several CNNs
and a fusion method to extract road surfaces and centerlines
simultaneously to construct road networks with much better
accuracy, connectivity, and completeness.

The main contributions of our work are summarized as
follows.

1) A new multistage framework is proposed for simultane-
ous road surface and centerline extraction from remote
sensing imagery, which aggregates both the semantic
and topological information of road networks by com-
bining the strengths of CNN-based segmentation and
tracing. To our knowledge, it is the first integrated
framework for simultaneous road surface segmentation
and centerline tracing.

2) The boosting strategy is introduced to enhance the road
segmentation results by applying multiple segmentation
networks, which learn from the failed cases of previ-
ous segmentation incrementally to connect the broken
segments in the initial masks. Moreover, a novel and
light encoder–decoder structure is designed for boosting
segmentation.

3) An improved iterative search algorithm guided by a
CNN-based decision function is introduced to centerline
tracing that starts tracing from multiple intersection
points, which are automatically derived from the road
segmentation maps predicted from the boosting segmen-
tation, which was proved to improve both automation
and completeness of centerline maps.

4) Finally, an empirical fusion method is introduced to
produce the final refined road surface and centerlines
through fusing the segmentation and centerline maps
from the preceding steps.

The remainder of this article is arranged as follows.
Section II introduces our proposed framework. In Section III,
we illustrate our experimental results and evaluations on
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Fig. 1. Flowchart of the proposed framework for simultaneous road surface and centerline extraction.

high-resolution remote sensing images from dozens of cities
over the world and compare our methods with the most current
methods in road segmentation and centerline tracing. We fur-
ther discuss the ramifications of our approach in Section IV
and present our conclusions in Section V.

II. MULTISTAGE FRAMEWORK FOR ROAD SURFACE

AND CENTERLINE EXTRACTION

Our proposed multistage framework for road surface and
centerline extraction, which is illustrated by the flowchart
in Fig. 1, has three main stages: 1) boosting segmenta-
tion; 2) multiple starting points tracing; and 3) fusion. First,
the remote sensing image is initially segmented by a main-
stream FCN method, which is followed by a series of boosting
segmentation steps with another FCN we designed. Using the
road mask maps predicted from the boosting segmentation, a
corner detection method is applied to discover road intersec-
tions and other distinctive points. Second, a multiple starting
points tracing is developed for tracing the topographical road
centerline networks starting from the extracted road points.
Finally, the results of road surface segmentation and centerline
tracing are merged through a fusion process to produce fine
segmentation and centerline maps. The implementation details
are presented in Sections II-A–II-C.

A. Boosting Segmentation

In this article, we treat road surface extraction as an
image semantic segmentation task that is realized through
CNN-based initial and boosting segmentation. In our pro-
posed method, D-LinkNet [23], which won the DeepGlobe
2018 Road Extraction Challenge [37], is applied to extract
an initial and coarse road segmentation map. We found that
many of the extraction process problems occur in the initial
segmentation map, especially the discontinuities among road
segments, which are caused by the utilized algorithm itself
or by occlusion, which are tackled with a boosting strategy
we developed. In an iterative manner, our boosting segmen-
tation works as a mender to fill the gaps and to connect
the fragmented road segments that existed in previous road
segmentation maps.

Our boosting segmentation is motivated by AdaBoost [38],
which concentrates on converting several weak classifiers

Fig. 2. Training procedure of boosting segmentation.

into a strong one. The results of the strong classifier are
generated by weighted voting from all the weak classifiers.
By introducing and adapting the AdaBoost strategy to road
segmentation refinement, a novel network named Boosting
Segmentation Network (BSNet) is proposed here to work as
a weak classifier in boosting segmentation.

In Fig. 2, the initial segmentation is implemented with D-
LinkNet. A subset (i.e., a set of patches (h × h) cropped from
the initial image (H × H ) and the corresponding ground truth)
is produced as the input of the BSNet for refinement. We only
crop out those patches whose intersection-over-union (IoU)
between the initial segmentation map and the ground truth is
lower than 0.7. Also, we discard the patches without roads
to alleviate imbalance between the number of positive and
negative samples. Finally, a subset X N is obtained, where
N represents the number of cropped patches (called data
items in AdaBoost), and X j represents the subset for training
each BSNet C j , where j is the number of iterations whose
maximum is k.

As shown in Fig. 2, the first BSNet C1 is fed with the X1

(i.e., X N ). After training, it is evaluated on the X N . A series of
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measures (using the following equations) are then calculated
for obtaining the voting weight of the current model and
updating the probability of each data item x i ∈ X N for the
next iteration.

The probability of x i is initialized by

Pi
j=1 = 1

N
. (1)

For BSNet C j ( j > 1), the training subset X j is first generated
through random resampling according to the probability Pi

j of
each data item x i , whereas the evaluation set is fixed with
the whole X N . After model training and prediction on the
evaluation set, the IoU of each data item x i is calculated,
where the error rate of x i is defined as follows:

εi
j = 1 − IoUi

j . (2)

The error rate of C j is

ε j =
N∑

i=1

(
εi

j × Pi
j

)
. (3)

The voting weight of C j is defined as follows:

ω j = log

(
1 − ε j

ε j

)
. (4)

Then, the probability of x i is updated for the next iteration as
follows:

Pi
j+1 =

⎧⎨
⎩

Pi
j × ε j

1 − ε j
, IoUi

j > TIoU

Pi
j , otherwise

(5)

where TIoU is a predefined threshold which is set to 0.7.
A normalization step is followed,

Pi
j+1 = Pi

j+1∑N
i=1 Pi

j+1

. (6)

The detailed boosting segmentation procedure is also given in
Algorithm 1.

BSNet is implemented with a light and efficient segmen-
tation network to learn how to fix the imperfect results of
previous segmentation iteratively. As illustrated in Fig. 3,
BSNet adopts an encoder–decoder architecture. The encoder
part utilizes ResNet-34 [9] model pretrained on ImageNet [39]
data set to accelerate the training procedure. It has four
down-sampling layers with the input size of 256 × 256. The
last three feature maps are down-sampled in the same size
as half of the last feature map before they are concatenated,
the process for which is denoted in Fig. 3 with blue arrows.
The dilated 3 × 3 convolution layers with dilation rates of 1,
2, and 4, both in cascade and parallel modes and named
the dilated block, are applied to enlarge the receptive field
and to preserve the spatial information. As shown in Fig. 3,
the receptive field of each path is different in order to combine
the features from different scales. From top to bottom, the
receptive fields are 15, 7, 3, and 1. Each convolution layer
is followed by a ReLU activation except the last convolution
layer which uses sigmoid activation. In order to reduce the
number of computation parameters and to preserve the spatial

Algorithm 1 Boosting Segmentation

Input: training dataset X N containing data item x with
probability P and corresponding label y ′. A predefined
threshold TIoU. The maximum number of BSNet is k and
BSNet is noted as C .
Initialize:

For i ∈[1, N]
Pi

j=1 = 1/N
For j = 1, 2, …, k

Randomly select X j from X N according to Pi
j

Training:
Train C j on dataset X j

Evaluation:
yi

j = C j(x i), x i ∈ X N

IoU i
j = IoU (yi

j , y
′i
j )

Error rate εi
j = 1 − IoUi

j
If ε j > 0.5 then k = j − 1; stop

Updating:
Foreach (x i , y ′i) in X N

Weight update β j = ε j/(1−ε j)
If IoU i

j > TIoU then Pi
j+1 = β j Pi

j

Else Pi
j+1 = Pi

j

Normalize probability; Pi
j+1 = Pi

j+1/
∑

i Pi
j+1

Inference:
Foreach x i in test dataset:
yi = ∑k

j=1

(
log 1

β j

)
C j (x i)

correlation among the pixels, we replaced the conventional
transposed convolution with the Data-dependent Upsampling
(DUpsampling) [40] in the decoder part, which recovers the
feature maps from the lowest resolution to the original scale.

The DUpsampling block is a project matrix for transforming
the feature map to the final prediction result. As shown
in Fig. 4, the input image size is h × w, the sampling ratio
is r , and the size of the last feature map F of the encoder is
h/r × w/r× Q. A convolution layer with a 1 × 1 kernel is
utilized to reshape it to h/r ×w/r× Q’, where Q’ = r ×r . For
each 1 × 1 × Q’ grid in the reshaped feature map F’, it is
reshaped to its corresponding spatial size r × r× 1. Finally,
all the blocks consist of a feature map Y’ equaling the size of
the original input.

Instead of training along with the complete BSNet,
the DUpsampling block was pretrained by minimizing the
reconstruction loss L rec. We defined W as a matrix to trans-
form F to the final output Y’ and Z as the inverse operator
which transformed Y’ to F . By denoting the ground truth as
Y , the reconstruction loss can be defined as follows:

L rec =
∑

Y

‖Y − Y ′‖2 =
∑

Y

‖Y − W ZY ‖2. (7)

Once W was pretrained before each BSNet iteration and kept
fixed, BSNet was trained and optimized with the loss function
Lseg, consisting of the summation of a dice coefficient loss
Ldice and a binary cross entropy (BCE) loss LBCE, which can
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Fig. 3. Structure of the BSNet. Pooling indicates 2× max pooling.

Fig. 4. DUpsampling block which upsamples the lowest feature map F at a size of h/r × w/r × Q to the final segmentation map at a size of h × w× 1.

be defined as follows:

Ldice = 1 −
∑w

i=1

∑h
j=1 |Predi j ∩ GTi j |∑w

i=1

∑h
j=1 (|Predi j | + |GTi j |)

(8)

LBCE = −
w∑

i=1

h∑
j=1

|GTi j × log Predi j + (1 − GTi j)

× log(1 − Predi j)| (9)

Lseg = Ldice + LBCE (10)

where Pred is the prediction, GT is the ground truth, and w and
h represent the width and height of the image, respectively.

The weighted result of these BSNets, which is called
boosted segmentation map, Rboost, is obtained by

Rboost =
∑k

j=1 ω j R j∑k
j=1 ω j

(11)

where k is the total number of BSNets, and ω j and R j consti-
tute the voting weight calculated by (4) and the segmentation
probability map of the j th BSNet C j , respectively.

An integrated strategy which takes advantage of probability
information from both the initial segmentation map and the
boosted segmentation map is introduced to obtain the boost-
ing segmentation results. Specifically, the initial segmentation
map, Rini, is formulated as a base map, and the boosted
segmentation map, Rboost, is added into the base map at the
pixels in case the sum of them is larger than a threshold Tseg,
resulting in probability segmentation map, Rseg. The algorithm

can be described as follows:
Rseg = Norm(Rini + Rboost[(Rini + Rboost) > Tseg]) (12)

where R [ f ] is an operator on the segmentation map R and
if f is TRUE at a pixel in R, the corresponding pixel value
remains unchanged, otherwise it is set to zero; and Norm (·) is
the normalization step to obtain the probability segmentation
map ranging from 0 to 1.

Finally, the probability map is binarized through the
OTSU [41] algorithm, which identifies the threshold automat-
ically to classify the foreground and background by maximiz-
ing the separability of the categories in gray levels.

B. Multiple Starting Points Tracing

Road centerline tracing aims to reconstruct the global
topology of road networks. Our algorithm, which is called
the multiple starting points tracer (MSP-Tracer), was devel-
oped from a baseline method called RoadTracer [36], which
searches road centerlines starting from a known point on a road
and constructs road networks iteratively. The key component
is a CNN-based decision function. At each step of tracing,
the CNN is utilized to decide either to walk a fixed distance
at an angle or stop and step back to the previous vertex in
the search tree. Then, the searching window centered on the
current point is updated and conveyed to the network for the
next prediction. Vertices (points on roads) and edges (line
segments connecting adjacent points) are added to a path list as
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the search proceeds, and the road network graph is constructed
until all the points in a searching stack are explored.

Our algorithm attempts to fix the two distinct drawbacks
of RoadTracer. The first drawback is that the starting point
is manually determined, which may be not applicable in
real applications and lowers the automation of the algorithm.
Its second drawback is that starting the search from a single
point easily can be affected by obstacles and may omit
many other roads as well, especially in large-scale remote
sensing images. To overcome these problems, our MSP-Tracer
algorithm traces the centerlines from multiple starting points,
which are automatically generated based on previous road
segmentation results rather than user interaction.

A corner detector called Good Features To Track [42] was
applied to detect the road junctions as starting points for
tracing. Before applying the detector on the segmentation map,
we skeletonized the road segmentation mask to a one-pixel
width. The scoring function of the Good Features To Track
operator is defined as follows:

R = min(λ1, λ2) (13)

where λ1 and λ2 are eigen values of matrix M (14), which is
a weighted covariance matrix with I representing the gradient
image:

M =
∑
x,y

w(x, y)

[
Ix Ix Ix Iy

Ix Iy Iy Iy

]
. (14)

After the multiple starting points were extracted, a CNN-based
decision function (decision_func) was applied to tracing the
road centerlines. The network and training process are similar
to the RoadTracer [36]. As illustrated in Fig. 5, the input layer
is a d ×d sliding window centered on the current point Stop in
a stack and consists of the red, green and blue (RGB) channels
of the image patch, the currently constructing graph G, and the
ground truth road graph G∗, which was only used in training
and replaced with a blank graph during inference. The output
layer consists of two components: an action component that
decides either walk or stop, Oaction =< Owalk, Ostop >; and
an angle component that decides which angle to walk toward,
Oangle. The network also outputs an intermediate segmentation
result, Oseg, which is a coarse thumbnail of the segmentation
map to constrain the training process. Therefore, the training
process is optimized by the square loss of angles and actions as
well as the cross-entropy loss between the predicted thumbnail
and the ground truth.

In the inference stage, the MSP-Tracer is conducted by
tracking the road network from each point in a starting
points list. First, one point is randomly chosen from the
starting points list and the MSP-Tracer starts tracing from this
point by following the output of the pretrained CNN-based
decision function step-by-step until the searching stops. Then,
another point is chosen as the next starting point from the
list and is pushed into the searching stack. Considering the
computing expense, we included an adaptive starting point
decision (ASPD) strategy which dynamically chooses the next
starting point according to the earlier explored graph. Specifi-
cally, the starting point of the following tracing is determined

Fig. 5. Architecture of CNN-based decision function. It outputs an action
component Oaction and an angle component Oangle; Oseg is a coarse thumbnail
of the segmentation map to constrain the training.

by checking whether the earlier explored graph is outside a
bounding box centered at a candidate starting point, which is
removed from the list if the bounding box intersects with the
previous constructed graph. The MSP-Tracer terminates when
all the starting points are explored. A graph that records the
nodes and edges is obtained by tracing these centerlines. The
inference procedure is also given in Algorithm 2.

Algorithm 2 Multiple Starting Points Tracing (MSP-Tracer)
Input: starting points list V , window W , graph G = �,
vertex stack S = �, move distance D, bounding box B .
while V is not empty, do

randomly pick Vi from V
S = Vi

initialize Wi centered at Vi

if G intersect with Wi ; break
else

while S is not empty, do
action, α = decision_func (G, Stop, Image)
u = Stop + (D cosα, D sinα)
if action == stop or u is outside B then

pop Stop from S
else

add vertex u to G
add an edge (Stop, u) to G
push u onto S
end if

end while
end if
remove Vi from V

return G

C. Fusion

Pixel-wise road segmentation tends to produce many iso-
lated and discontinuous road segments due to ignoring the
structural and topological information of roads and the occlu-
sions from backgrounds, whereas centerline graphs derived
from tracing approaches are influenced by the locations of the
starting points. There may be no starting point assigned on
an isolated road, and our MSP-Tracer greatly advances the
original single start point RoadTracer. We attempted to com-
bine the road features extracted by the above two approaches
to constrain each other and to benefit their complementary
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Fig. 6. Process of the fusion method.

advantages. Our proposed fusion method aggregates both the
semantic and topological information of road networks. The
process is shown in Fig. 6.

The first step in our fusion method is to detect the dis-
continuous segments in the boosting segmentation map with
the help of the centerline graph inferred from the MSP-
Tracer. The centerline graph that records the nodes and edges
is split into multiple segments with fixed lengths, and it
judges, for each segment, whether there is an intersection with
the binary segmentation map. The segment is considered as
“discontinuous” if it is partially covered by the segmentation
map.

In the second step, a centerline map is generated with
a certain road width at the discontinuous segments. The
optimal road width is automatically inferred; and a buffer with
an empirical width wbuffer is created for each discontinuous
segment i . The intersection of the buffer area and the seg-
mentation map, denoted as areai , is obtained, and the road
width, wi

road, of segment i then is calculated as follows:

wi
road = areai

lengthi = num(Seg ∩ Bufferi)

num(Seg ∩ Ceni )
(15)

where Seg refers to the segmentation map, Bufferi refers to the
buffer area of segment i on the centerline graph, Ceni is the
single-pixel width segment i on the centerline graph, and num
(·) counts the number of road pixels in the intersection area.
Then, the centerline graph is rasterized to obtain the centerline
segment map by expanding the inferred width. Note that only
those “discontinuous segments” need to be expanded.

The third step is the fusion of the centerline segment
map, denoted as Rcen, and the probabilistic segmentation map
Rseg derived from boosting segmentation to an integrated
probability map Rfuse. The map Rfuse is obtained under the
rule

Rfuse = Rseg[(Rseg + Rcen) ≤ (Tfuse + 1)]
+ Rcen[(Rseg + Rcen) > (Tfuse + 1)] (16)

where R [ f ] is an operator on the map R. At each pixel in R,
if f is TRUE, the pixel value remains unchanged; otherwise,
the pixel value is set to 0. Tfuse equals to the threshold of the
OTSU algorithm for binarizing the segmentation map Rseg,
which is adaptive to each input image.

Fig. 7. Two examples to show the advantages of the fusion method.
(a) Connectivity of segmentation map (yellow) can be enhanced by the
buffered centerline (light blue). (b) Completeness of centerline graph (black
lines) can be improved by segmentation map.

The last step generates the final road segmentation and
centerline map from Rfuse. Rfuse is binarized with the OTSU
algorithm [41], which discovers the optimal threshold auto-
matically, to produce a binary map (i.e., the final segmentation
map). Morphological thinning algorithm [43] is performed on
the segmentation map to obtain the final centerline map.

Two obvious advantages of our fusion method, which fuses
the results from boosting segmentation and centerline tracing,
are described in Fig. 7. First, the discontinuous segments on
the segmentation map can be connected through the topol-
ogy information provided by centerline graph; and as shown
in Fig. 7(a), the segment i on the centerline graph, with road
width wi

road calculated by (15), helps connect the two separate
road surfaces (yellow). Second, the segmentation map helps
connect the broken centerlines or create a centerline in isolated
roads. As shown in Fig. 7(b), the two centerlines are correctly
bridged by (16) and the following thinning algorithm.

Note that in the fusion step, we only process the partially
overlapped centerlines and segmentation maps. If they are
fully overlapped, both are inferred well, but if they do not
overlap, the segmentation map will probably create centerlines
according to (16).

III. EXPERIMENT AND RESULTS

A. Data Sets

We performed our experiments on three diverse data sets:
1) the Massachusetts data set [44]; 2) the Shaoxing data set;
and 3) the Cities data set [36].

The Massachusetts data set, which is publicly available,
contains aerial images with at least 1500 × 1500 pixel
size and 1-m resolution together with the corresponding
7-pixel-width segmentation ground truth collected from Open-
StreetMap (OSM) [45] that covers about 2600 km2 in Massa-
chusetts. After manually excluding some damaged images,
we preprocessed the data set by merging and cropping it
into 256 image tiles of 1024 × 1024 pixels. Among them,
192 images were separated for training and the remaining
64 images were used for testing. Corresponding centerline
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ground truths were obtained by skeletonizing the pixel level
segmentation annotations.

The Shaoxing data set was captured from Shaoxing City,
which is a watery city in China with many lakes and rivers,
making it challenging to extract complete and accurate road
networks. There are 532 1024 × 1024 aerial images and
corresponding segmentation annotations with variable road
widths that are close to the real width. The corresponding
ground resolution of a pixel is 0.6 m. A total of 372 images
were used for training and 160 for testing. We obtained
the centerline ground truth by skeletonizing the pixel level
segmentation annotations.

In terms of the Cities data set, we collected satellite images
from Google Earth [46] with 60 cm/pixel resolution, and the
centerline ground truth was obtained from OSM covering
the urban core of 37 cities across six countries. For each
city, the centerline graph covered a region of approximately
24 km2 around the city center. The data set was divided into a
training set of 25 cities and a test set of 12 other cities. Those
images also were cropped into 1024 × 1024 tiles, resulting
in 1600 images for training and 768 images for testing. The
ground truth for road segmentation was obtained by rasterizing
the road centerline with a constant width of 8 pixels.

B. Evaluation Metrics

To assess the quantitative performance in both road sur-
face and centerline extraction, seven benchmark metrics were
introduced. Four metrics were employed in the road surface
segmentation evaluation and the other three metrics were
utilized in the road centerline extraction evaluation.

1) Road Segmentation Metrics: Recall, precision, and IoU,
which are commonly used as the evaluation indicator for
semantic segmentation, were the metrics adopted to estimate
the segmentation accuracy at the pixel level. IoU, which is an
overall metric offering a tradeoff between recall and precision,
refers to the ratio between the intersection of the road pixels
predicted by the algorithm and the true-positive pixels and the
result of their union.

The equal-width road mask generated from the OSM data
in both the Massachusetts and Cities data sets adversely
affected the pixel-based metrics as road width varies. Thus,
we used relaxed metrics based on the “buffer method” sug-
gested by Mnih and Hinton [47]. The relaxed recall and
precision introduced a buffer. Within the range of ϕ pixels
from any positively labeled pixel of the ground truth, each
pixel predicted as positive was considered correctly classified.

Another critical issue in road segmentation is the connec-
tivity of the roads. It makes little sense to obtain only isolated
road segments. Therefore, we provided a metric called connec-
tivity (Conn), which reflects the connectivity and topology of
road networks at the local scale. Specifically, the ground truth
centerline graph is split in multiple segments of equal length,
and the segment totally covered by the predicted segmentation
map is considered as the connected road segments. The
calculation of the connectivity is as follows:

Conn = 2Nconn

Ngt + Npred
(17)

where Nconn is the number of connected segments, and Ngt

and Npred are the total number of segments on the ground
truth graph and skeletonized prediction graph, respectively.

2) Centerline Extraction Metrics: Completeness,
correctness, and quality, which were introduced by
Wiedemann et al. [48], were utilized to assess the
performance of the centerline extraction algorithms.
Completeness (Comp) is a variant of recall, which is
the percentage of the reference road centerline that lies
within a buffer of width ρ around the extracted centerlines,
and correctness (Corr) is a variant of precision and is
the percentage of the extracted road centerlines that lies
within a buffer of width ρ around the reference centerlines.
Quality (Qual) is an overall metric which combines Comp
and Corr. They are described as follows:

Comp = length of matched reference

length of reference
(18)

Corr = length of matched extraction

length of extraction
(19)

Qual = length of matched extraction

length of extraction+length of unmatched reference
.

(20)

C. Implementation Details

1) Boosting Segmentation: For the initial segmentation,
we implement data augmentation, which includes image hori-
zontal flip, vertical flip, diagonal flip, color jittering, shifting,
and scaling to expand the data set size. The weights of the
BCE loss and dice loss are equal. The Adam optimizer [49]
was selected as the network optimizer. The learning rate is
initially set at 2e-4 and divided by 5 while the training loss
stops decreasing up to three continuous epochs. The batch
size during the training phase is fixed as two on 1024 ×
1024 tiles. We use test time augmentation (TTA) in prediction,
which includes image horizontal flip, vertical flip, and diagonal
flip (predicting each image 2 × 2 × 2 = 8 times) also on
1024 × 1024 tiles, and then produced an initial segmentation
map in both the binary and probability formats. To obtain a
boosted segmentation map, we use two BSNets in the boost-
ing segmentation. The training subsets for BSNets consisted
of 256 × 256 patches which are seamlessly cropped from the
initial segmentation binary mask. The IoU of each patch then
is calculated; and only when the IoU is lower than 0.7 will
the patch be chosen as the training subset. For example, in the
Massachusetts data set, 470 image patches of 256 × 256 pixels
were chosen from 256 images of 1024 × 1024 pixels and
conveyed to the BSNet as a training subset. Data augmentation
is applied in BSNet. The DUpsampling ratio is 16 and the
lowest resolution of the feature map (i.e., the output feature
map from the ResNet-34) is 16 × 16. The learning rate is 5e-3.
The previous ten epochs are taken as a warm-up and after that,
the learning rate is updated each epoch polynomial. The total
training epoch is set at 200, but the network will terminate
early if it stops decreasing in six continuous epochs. TTA is
utilized in testing phase as well. To obtain the aggregation
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of the initial and boosted segmentation map, we summed the
probability map and compared it with Tseg, which is set at 1.

2) Multiple Starting Points Tracing: A larger image pre-
serves better road completeness and connectivity. Before trac-
ing, we detect corners from 8192 × 8192 binary maps, which
are merged from 1024 × 1024 masks. For each merged map,
we generated a maximum of 100 points with a minimum dis-
tance of 400 pixels for the adjacent corners. For road centerline
tracing, we set the search window size d = 256 pixels. In the
ASPD algorithm, we set the radius of the search bounding box
as 60 pixels, which is three times that of each road segment
length. The batch size was set at four and the loss function
includes three parts with equal weight, action loss, angle loss,
and cross-entropy loss between the predicted thumbnail and
the ground truth. We used the Adam optimizer and trained
about 400 epochs. The initial learning rate was 1e-5 and was
updated every 100 epochs. Similar to RoadTracer [36], the
output angle contained 64 evenly distributed directions and
the angle with the maximum probability was selected as the
moving direction; a threshold was set at 0.4 for action output,
which meant that if Owalk was above the threshold, then the
point walked 20 pixels at each step. Otherwise, it stopped and
stepped back to the previous node.

3) Fusion: The buffer width wbuffer was set at 11 pixels in
order to make the buffer a little wider than the road on the
segmentation map.

All the algorithms were implemented based on
PyTorch [50], and the experiments were conducted at a
NVIDIA GTX1060 with 6-GB memory.

D. Comparison of Road Segmentation Methods

We compared our proposed algorithms with U-Net [13],
ResUnet [19], ASPP-Unet [20], RCNN-Unet [22], and
LinkNet [24], as well as D-LinkNet [23]. The relaxed recall,
precision, IoU, and Conn of each method were computed. The
buffer width ϕ was set at 4 pixels. Please note that the “buffer
width” is the distance between the edges and the centerline
(i.e., a half width of the buffer) as defined in many related
studies.

Our results for different segmentation methods on different
data sets are presented in Table I. It can be seen first that,
compared with U-Net, ResUnet, ASPP-Unet, RCNN-Unet and
LinkNet, D-LinkNet achieved the best performance in both
IoU and Conn. Second, both our boosting segmentation and
fusion methods exceeded D-LinkNet considerably. Taking the
results of D-LinkNet as a baseline, the IoU improved 1.6% and
Conn improved 3.0% when using our boosting segmentation
on the Massachusetts data set. When our fusion method
was used, IoU improved 2.0% and Conn improved 4.3%.
On the Shaoxing data set, the results for boosting segmentation
increased by 0.7% in IoU and 1.0% in Conn compared to
D-LinkNet. Our fusion method outperformed D-LinkNet by
2.5% in Conn. In terms of the Cities data set, where prediction
was performed on 12 cities around the world, the IoU and
Conn of our boosting segmentation were 2.4% and 6.3%
higher than the baseline; the IoU and Conn of fusion method
were 2.7% and 7.8% higher than the baseline, respectively.

The improvement for IoU was not as significant, but Conn
greatly improved after we introduced the boosting strategy
and the fusion with the centerline graphs. This is critical
progress as connectivity is the key indicator toward achieving
automation of road extraction and a better indicator than
IoU for progress toward semiautomatic road extraction, where
manual work is mainly spent on fixing holes and breaks
between extracted road segments.

In Fig. 8, we show our qualitative comparison of different
road segmentation methods on different data sets. There are
six rows and ten columns of subfigures. It can be seen
from the third column to the seventh column that U-Net,
ResUnet, ASPP-Unet, RCNN-Unet, and LinkNet had diffi-
culties distinguishing the homogenous regions from the real
road regions. Among them, ResUnet performed the poor-
est on the Cities data set. As shown in the eighth col-
umn, D-LinkNet eliminated most of the false positives and
false negatives but still experienced discontinuities due to
the shadows caused by trees and buildings. In contrast, our
boosting segmentation achieved more coherent road areas
and much smoother road boundaries than D-LinkNet, which
demonstrates that our boosting segmentation is more robust
against occlusions. Moreover, after integrating the centerline
results by the MSP-Tracer, our fusion method further improved
the connectivity. In terms of the Shaoxing data set, illus-
trated in the third and fourth rows, our fusion strategy was
able to connect the gaps and obtained more structured road
networks.

E. Comparison of Centerline Extraction Methods

Table II contains the quantitative comparison of the dif-
ferent road centerline extraction methods on different data
sets for completeness (Comp), correctness (Corr), and quality
(Qual). The buffer width ρ was set at 4 pixels. Compared
with RoadTracer, our results after applying multiple starting
points (MSP-Tracer) significantly improved the topology. The
Comp, Corr, and Qual improved 21.0%, 19.5%, and 14.8%,
respectively, on the Shaoxing data set. The improvement on
the other data sets was relatively small as they had less isolated
roads.

Our fusion strategy radically outperformed RoadTracer. For
example, the Qual of our fusion method exceeded that of
RoadTracer by 48.8%, 50.0%, and 37.1% for the Massa-
chusetts data set, Shaoxing data set, and Cities data set, respec-
tively. The Comp and Corr scores also showed significant
improvement.

Fig. 9 shows a visual comparison of different road centerline
extraction methods on the Massachusetts data set, Shaoxing
data set, and Cities data set. For better visualization, the
images have been cropped. As illustrated in the first column,
RoadTracer performed well on road connectivity but produced
incomplete road networks from large-scale remote sensing
images due to the limitation of a single starting point. By com-
paring the first and second columns, it can be clearly seen that
our MSP-Tracer achieved more complete road networks than
RoadTracer and efficiently eliminated the viaduct and river
blocking problems. Considering the complementary character-
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TABLE I

ROAD SEGMENTATION RESULTS, WHERE THE VALUES IN BOLD ARE WITH THE BEST PERFORMANCE

Fig. 8. Qualitative results of different road segmentation methods on different data sets. (From top to bottom) Every two consecutive rows represent the
performance for the Massachusetts data set, Shaoxing data set, and Cities data set. (a) Image. (b) Ground truth. (c) U-Net. (d) ResUnet. (e) ASPP-Unet.
(f) RCNN-Unet. (g) LinkNet. (h) D-LinkNet. (i) Boosting Segmentation. (j) Fusion.

istics between road segmentation and centerline tracing, our
fusion method extracted a more accurate road network and
performed much better as far as completeness. For example,

in the left-bottom corner of the bottom image (from the Cities
data set), several roads were totally missed by the MSP-Tracer
but were well repaired by the segmentation results.
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Fig. 9. Visual results of different road centerline extraction methods on the (top) Massachusetts data set, (middle) Shaoxing data set, and (bottom) Cities
data set. We overlay the inferred graph (yellow) over ground truth from OSM data (light blue). (a) RoadTracer. (b) MSP-Tracer. (c) Fusion.

TABLE II

ROAD CENTERLINE RESULTS, WHERE THE VALUES

IN BOLD ARE WITH THE BEST PERFORMANCE

TABLE III

RESULTS OF BOOSTING SEGMENTATION WITH DIFFERENT
NUMBERS OF BSNETS ON THE CITIES DATA SET

IV. DISCUSSION

In this section, we focus on the impacts of a few tunable
parameters (the number of BSNets and the buffer width of the
centerline) in our framework for simultaneous road surface and
centerline extraction. In addition, the influence of the sample
quality on the road extraction is discussed.

Our boosting segmentation includes a series of BSNets.
When the number of BSNet was 2, the segmentation model
outperformed the other road segmentation methods on differ-
ent data sets quantitatively (Table I) and qualitatively (Fig. 8).
Here, we evaluate the effects of the different number of
BSNets on the performance of road surface segmentation for
the Cities data set. The comparison is described in Table III,

Fig. 10. Results of different centerline extraction methods with different
buffer widths, ρ = 1, 2, 4, on the Massachusetts data set.

where the best performance is denoted in bold type and the
second best is underlined. Compared with D-LinkNet (k =
0), the first boosting segmentation (k = 1) obtained 2.3%
IoU and 6.3% Conn improvement. When k was increased,
the performance of the boosting segmentation changed only
slightly, and the highest IoU and Conn were reached when
k = 2. The results proved that the performance of the model
was robust to parameter k.

We introduced a buffer-based evaluation for the road center-
lines as it was difficult to directly compare the pixel difference
between the extracted centerline and the ground truth. We dis-
cussed earlier the influence of different buffer widths ρ on the
performance of centerline extraction methods. Fig. 10 shows
the performances of the different centerline extraction methods
with different buffer widths (1, 2, and 4 pixels) on the
Massachusetts data set. Our results indicate that as the buffer
width grew, the improvement increased. Our fusion method
performed better than RoadTracer [36] and MSP-Tracer on
Qual and achieved a 40% improvement on Qual compared
to RoadTracer. Also, when buffer width ρ changed from
2 to 4, the performance of the fusion slightly improved.
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Fig. 11. Lack of road labels leads to the biased precision score on the
Shaoxing data set. (a) Image. (b) Ground Truth. (c) D-LinkNet. (d) Fusion.
The third row is the local close-ups of the second row.

Therefore, we stopped at 4 as a wider width indicated a more
relaxed constraint for the indicators.

The ground truth of the samples heavily impacted the
process of model training and the quantitative assessment of
accuracy. The ground truths for our road data sets were derived
from manually labeled GIS maps or OSM data. The quality
suffered from annotations at different levels of detail (LoDs),
outdated geospatial databases, and the complexity of various
road types. Fig. 11 shows two examples from the Shaoxing
data set where our method was able to predict narrow roads
under trees and was more robust against occlusions than the D-
LinkNet. However, due to the missing corresponding ground
truth, the precision score of our method was lower than that
of D-LinkNet.

Our road extraction method continues to be refined as well
as our rule-making for the different levels of road annotations
and corresponding finer evaluation criteria, which jointly are
advancing the automation of road extraction.

V. CONCLUSION

In this article, a novel CNN-based multistage framework
was proposed for simultaneous road surface and centerline
tracing from remote sensing images instead of treating them
separately as most of the current road extraction methods
do. This multistage framework presents a coarse-to-fine road
extraction approach. Based on the initial segmentation results,
a boosting strategy was introduced to improve the segmen-
tation accuracy, which especially increased the connectivity
of road segments by learning the complementary information
of previous segmentation maps and labels with an efficient
encoder–decoder network. Then, an improved road centerline
tracing method, which tracks road centerlines from multiple
starting points that are automatically derived from the seg-
mentation maps, was proposed to construct a more complete
road network. Finally, the centerline graph rasterized with
an adaptive width on the discontinuous segments of a seg-
mentation map was fused with the road surface segmentation

map to obtain the final road segmentation maps and centerline
networks.

Our method was evaluated on three diverse data sets and
proved to be superior than other current road segmentation and
centerline extraction methods as far as extraction accuracy and
especially road connectivity and completeness.

Our future work will address two aspects. First, due to
the limitations of high-quality labels, it would be interesting
to study a semisupervised model which can detect road and
centerlines by using a smaller amount of training samples.
Second, the regularization of road networks (i.e., using more
structured polylines or polygons to fit the networks extracted
by CNNs) would be a key step toward achieving accuracy that
matches that of manual road delineation, which currently lacks
investigation.
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