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ABSTRACT 
Drawing and updating road networks are both time-

consuming and labor-intensive. Deep learning technology 
and high-resolution remote sensing images have provided 
opportunities for automatic road extraction. However, recent 
convolutional neural network (CNN) based segmentation 
methods have shown serious problems on connectivity; road 
tracing methods with single starting point perform well in 
connectivity but often result in part areas unreached. We 
propose a multiple starting points tracer which benefits from 
both segmentation and tracing methods. We compare our 
approach with most recent tracing methods on satellite 
images of global cities and find that our method achieves 8% 
improvement on IoU. 
 

Index Terms— Road network extraction, segmentation, 
tracing, convolutional neural network, corner detection. 
 

1. INTRODUCTION 
Road extraction from high-resolution satellite images, a 

fundamental research in earth observation and remote sensing, 
plays an important role in the applications of geo-information 
updating, urban transportation planning and autonomous 
vehicle driving. Moreover, accurate road maps can assist in 
scene understanding by providing prior knowledge for 
identifying buildings, crops and many other surface objects. 
Although it has received considerable attentions in the past 
decades, road extraction is still a challenging task because of 
complex ground information, such as shadow of buildings, 
shade of trees, vehicles, and road-like constructions. 
Therefore, extracted roads may suffer from poor connectivity 
and false recognition. 

Traditional road extraction algorithms perform well in 
simple scenes but fail to handle complex scenes. In recent 
years, researchers have put forward several effective models 
and algorithms inspired by deep learning. In general, most 
works on this topic can be divided into two categories: 
segmentation-based approach, and tracing-based approach. 
The former aims at generating binary pixel-wise mask of 
roads, and the latter aims at detecting road central lines. 

With respect to segmentation-based approach, one of the 
early attempts was made by Guo et al. [1], who utilized the 
gradient information to segment road areas assisted by digital 

line graph (DLG) data. Watershed transformation [2] and 
morphology method [3] were used to extract roads from 
aerial images. As the development of deep learning, many 
CNN based methods proposed for semantic segmentation 
have been introduced to detect roads from aerial or satellite 
images. Zhang et al. [4] combined residual learning and U-
net model to achieve better results. Hong et al. [5] utilized a 
pyramid like architecture to enhance road connectivity. In 
addition, complex post processing like conditional random 
field (CRF) are usually required to refine road segmentation. 

In the case of tracing-based approach, researchers applied 
the GPS data [6] to improve road topology. Road centerlines 
are usually obtained by eroding prior segmentation result. 
Some researchers have attempted to search road centerlines 
from satellite images directly. Gellert et al. [7] estimated road 
topology on segmentation masks, reasoned and repaired the 
brokenness by shortest path search. Favyen et al. [8] proposed 
a state-of-the-art iterative search algorithm to estimate road 
centerlines directly from satellite images. 

Up to now, remarkable improvements have been made by 
segmentation-based approach and tracing-based approach, 
while the problem is far from being solved. Roads extracted 
by segmentation-based methods often miss links in crossroad, 
and road network graphs inferred by single-starting-point 
searching methods are usually blocked by objects like rivers, 
viaducts. In order to solve this problem, we combine the latest 
segmentation and tracing strategies to utilize their 
complementary advantages. Specifically, we supply multiple 
starting points for tracing-based approach by detecting 
corners from the output of an improved segmentation-based 
approach. Besides, we propose two algorithms to refine the 
final graph. By contrast, our approach obtains more road 
details while maintains road connectivity. 
 

2. METHODOLOGY 
This study attempts to construct topological road network 

graphs from remote sensing images. A two-stage method for 
road centerline extraction is proposed and shown in Fig. 1. 
Stage A includes an initial pixel-wise semantic segmentation, 
followed by a starting points generation algorithm described 
in Section 2.1. Stage B constructs road network maps by road 
centerline tracing and post refinements, which is described in 
Section 2.2.
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Fig. 1. Overview of our method. In STAGE A, a segmentation network is trained to produce binary masks for generating starting points by 
utilizing a corner detection algorithm. In STAGE B, road centerline tracer constructs road network maps from multiple starting points. 

    
2.1 Generating starting points 

Starting point generation is divided into two steps, road 
segmentation and starting points detection. We utilize a fully 
convolutional network (FCN) similar to D-Linknet [9], which 
won the DeepGlobe 2018 Road Extraction Challenge with the 
best IoU scores. The network includes three parts: encoder, 
decoder and lateral connections between them. The encoder 
utilizes ResNet-34 [10] model which was pre-trained on the 
ImageNet dataset [11] to accelerate training procedure. 
Besides, dilated convolutions with various dilation rates are 
introduced into the lateral connections to capture multi-scale 
information as well as increase the receptive field of feature 
points. Transposed convolution is involved in decoder to 
restore the resolution of feature map. Apart from binary cross 
entropy (BCE) loss and dice coefficient loss, we design a new 
loss named link loss for constraining road connectivity: 

 
 

(1) 

where P is predicted mask, GT is single-pixel width ground 
truth mask after morphology thinning, and N is batch size. 

Then, we use corner detector to generate starting points 
from segmentation masks. In order to produce high-quality 
road network maps, the starting points should be uniformly 
distributed in images. For each point, it is regarded as 
efficient if it has more potential directions. For example, if 
the starting point locates at the crossroad, it has four potential 
search directions. We locate those efficient starting points by 
the Good Feature To Track operator [12], which is an 
improved Harris corner detector. In Harris corner operator, 
the scoring function is: 

   (2) 
While in the Good Feature To Track operator, it is: 

   (3) 
where λ1 and λ2 are eigen values of matrix M which is a 
weighted covariance matrix as in (4), I means gradient image. 

  (4) 

Instead of applying the detector directly on segmentation map, 
we also skeletonize the road mask to obtain thin road lines for 
better searching accurate starting points. 
 

2.2 RoadTracer with multi-starting points 
We utilize a road tracing model similar to RoadTracer [8], 

to construct accurate road maps from satellite images. An 
iterative search algorithm based on CNN is utilized to derive 
road network maps. The network structure is demonstrated as 
Fig. 2. The input layer consists of a 256 × 256 window 
centered on the current point Stop in a stack. This window has 
five channels: the RGB values of the image patch around Stop, 
the ground truth road graph G*, which is only used in training 
and replaced with a blank graph in prediction, the currently 
constructing graph, G. The output layer consists of two 
components: an action component that decides either walk or 
stop, Oaction = <owalk, ostop>, and an angle component that 
decides which angle to walk towards, Oangle. 
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Fig. 2. Architecture of the CNN for road tracing. The ×N means a 
stack of N same layers, all the convolution kernel size is 3 × 3, and 
the down-sampling is achieved with a stride of 2. 

 
The searching starts from a known point on the road 

network. Vertices and edges are added to the path as search 
goes. The CNN is invoked at each step to determine either to 
walk a fixed distance at an angle or stop and step back to the 
previous vertex in the search tree. However, in the original 
RoadTracer [8], the searching starts from a given point on the 
road network, which lowered the automation of the algorithm. 

We use multiple corner points automatically derived from 
Stage A as starting points for road centerline tracer, rather 
than choose single starting point from ground truth as 
RoadTracer does. Multi-point tracing means reasoning road 
graph from each point in a points list. Considering the 
computing expense, we propose an Adaptive Starting Point 
Decision (ASPD) algorithm shown in Fig. 3 (a), which 
dynamically picks out next starting point according to earlier 
explored graph. Specifically, the starting point of following 
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tracing is determined by whether earlier explored graph is 
outside a bounding box centered at a current point. Multiple 
starting point road tracing generates road network graphs 
with overlaps which requires post processing. Accordingly, 
we propose a Graph Merging (GM) algorithm shown in Fig. 
3 (b), which first randomly takes a graph as the base graph, 
then judges whether the angle between edges contained in the 
same bounding box exceeds the threshold. For example, if the 
two edges are parallel, the angle is 0. We merge edges if the 
angle is lower than the threshold, or add edges into base graph 
on the contrary. Algorithm 1 shows the pseudocode for road 
centerline tracer with multiple starting points. 

(a) (b)
 

Fig. 3. The yellow line represents the base graph, black points are 
vertices on the road. (a) shows the ASPD algorithm. The blue 
window centered at a starting point (red) intersecting with base 
graph will be removed. On the contrary, the starting point (green) 
outside the graph is retained. (b) shows the GM algorithm. The green 
segment in the blue bounding box will be merged to base graph 
(yellow). On the other hand, the red one will be retained. 

 
Algorithm 1 Road Centerline Tracer with multiple starting points 
Input: starting points list C, an initial graph array Garray, window 
Wi centered at Ci, threshold for GM algorithm T, 
while C is not empty do 
        random pick Ci from C        
        initialize Wi centered at Ci   
        if Garray intersect with Wi; break 
        else 
              Gi =centerline_tracing (Ci, Image) 
              add Gi to Garray 
           end if     

       remove Ci from C 
end while 
random pick Gbase from Garray 
for Gi in Garray 

for edge in Gi: 
              if angle_difference(edge, Gbase ) > T then 
                     add edge to Gbase  
              end if 
return Gbase  
 

 
3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 
3.1 Datasets and metrics  

To thoroughly evaluate the performance of our algorithm, 
we assemble a large collection of high-resolution satellite 
images and corresponding ground truth road network graphs, 
which is similar to the dataset of RoadTracer [8]. We obtain 
satellite images from Google Earth at 60 cm/pixel resolution, 
and the road network graphs from OpenStreetMap (OSM) [13] 
covering the urban core of 37 cities across 6 countries. We 
convert the coordinate system of the road network so that the 

annotations and satellite images correctly correspond. For 
each city, the graph covers a region of approximately 24 
square kilometers around the city center. The dataset is 
divided into a training set with 25 cities and a test set with 12 
other cities. Due to the limitation of GPU capacity, those 
images are cropped into 1024×1024 tiles for training. In 
prediction, we choose an 8192 × 8192 pixels region of each 
city for accuracy evaluation as area of different cities varies.  

The road extraction task can be considered as a binary 
classification problem, where road pixels are positives and 
non-road pixels are negatives. In [8], the road centerline 
graph is evaluated on junction metric, however, this indicator 
focuses only on connectivity and performs poor on 
completeness. In contrast, we evaluate the road centerline 
graph on F1-Score and Intersection-over-Union (IoU).  IoU 
refers to the ratio of the intersection between predicted pixels 
and actual pixels to their union, which is commonly used as 
the evaluation indicator of semantic segmentation and target 
detection. Considering that IoU cannot properly evaluate road 
topology on single-pixel width centerlines, we have expanded 
the single-pixel width ground truth and prediction to 8 pixels 
wide. Although they may show relative low score in assessing 
road centerline graph, we find the IoU and F1-score could 
well discriminate the performances of different methods, and 
reflect both connectivity and completeness of a graph.  
 
3.2 Implementation details 

For our segmentation model, we implement data 
augmentation including image horizontal flip, vertical flip, 
diagonal flip, color jittering, shifting and scaling. We add 
BCE loss, dice coefficient loss and our link loss with equal 
weight as loss function and choose Adam [14] as our 
optimizer. The learning rate was originally set to 2e-4, and 
divided by 5 while observing the training loss decreasing 
slowly for 3 times. The batch size during training phase was 
fixed as 4 on 1024×1024 tiles. It took about 108 epochs for 
our network to converge. We did test time augmentation 
(TTA) in prediction, including image horizontal flip, vertical 
flip, diagonal flip (predicting each image 2 × 2 × 2 = 8 times) 
also on 1024×1024 tiles, and then stitch the outputs to 
produce the final segmentation maps of original 8192×8192 
image size. Then, we averaged the probability of each 
prediction, using 0.5 as our prediction threshold to generate 
binary outputs.  

For corner detection from binary outputs of segmentation, 
we generate maximum 100 points and minimum distance of 
400 pixels for adjacent corners. For road centerline tracer, we 
set the search window size as 256 × 256 pixels. The batch size 
is 4 and the loss function includes three parts, detection loss, 
action loss and angle loss. We use Adam optimizer and train 
about 400 epochs. In the ASPD algorithm, we set the radius 
of search bounding box as 60 pixels which is 3 times of each 
road segment length. Each edge’s bounding box is expanded 
by 40 pixels and the angle threshold is 30° in the GM 
algorithm. 
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3.3 Results 
We implement RoadTracer [8], our RoadTracer with single 

starting point (RoadTracer-S), RoadTracer with multiple 
starting points (RoadTracer-M) and evaluate these three 
models on 12 cities in the test set. The performance of 
different models is shown in Table 1. 

Table 1. Comparison of different methods on 12 cities 
Method F1-Score IoU 

RoadTracer [8] 0.2692 0.1700 
RoadTracer-S (ours) 0.2717 0.1725 
RoadTracer-M (ours) 0.3733 0.2575 

 

From the experiments, we find that the starting point 
locating in crossroad could make slight improvement on 
RoadTracer, nearly 0.2% on IoU. This proves that the starting 
point with more potential directions could produce little 
better results. Compared with RoadTracer, our RoadTracer-
M makes great improvement in road topology search: 10.4% 
and 8.7% improvement (38.6% and 51.1% relative 
improvement) on the F1-Score and IOU, respectively. We 
also present some detailed results of cities in our test set in 
Table 2. 

Table 2. Quantitative Evaluation results (IoU) on four test cities 
 Chicago Paris Pittsburgh Toronto 

RoadTracer 0.17 0.15 0.05 0.26 
RoadTracer-S 0.15 0.15 0.07 0.26 

RoadTracer-M 0.31 0.24 0.28 0.48 
 

In Fig. 4, we illustrate qualitative results in crops from four 
cities: Chicago, Pittsburgh, Paris and Toronto. Compared 
with RoadTracer, RoadTracer-S could find more roads in 
some regions. RoadTracer-M performs much better in 
searching more areas and extracting more roads in cities 
while RoadTracer is always blocked by bridge and viaduct. 
 

 
         (a)                                (b)                               (c) 

Fig. 4. Comparison of results obtained by roadtracer from three 
types of starting points in four cities, Chicago (top), Paris, Pittsburgh, 
Toronto (bottom). (a) RoadTracer. (b) RoadTracer-S. (c) 
RoadTracer-M. We overlay the predicted graph (yellow) over 
ground truth from OSM (light blue). 

 
4. CONCLUSION 

In this paper we presented an approach which integrates 
CNN based road segmentation and road centerline tracing. 
Segmentation result is utilized to assist tracing by generating 
many uniformly distributed starting points. Searching from 

multiple starting points can efficiently eliminate viaduct or 
river blocking problems which exist in single starting point 
road tracing. The experiment results show that our multiple 
starting points road tracing method improves road extraction 
result significantly. Furthermore, two optimizing methods are 
proposed to reduce computing cost and improve final results. 
We plan to keep exploring the combination of segmentation-
based approach and tracing-based approach to provide high-
quality road centerline networks and pixel-based road masks 
simultaneously. 
 

5. REFERENCES 
[1] D. Guo, A. Weeks, H. Klee. "Segmentations of road area in high 
resolution images." In Geoscience and Remote Sensing Symposium, 
Proceedings. IEEE International, vol. 6, pp. 3810-3813, 2004. 
[2] S. Beucher, M. Bilodeau. "Road segmentation and obstacle 
detection by a fast watershed transformation." In Intelligent 
Vehicles' 94 Symposium, Proceedings. pp. 296-301, 1994. 
[3] S. Letitia, E.C. Monie. "Road segmentation from satellite aerial 
images by means of adaptive neighborhood mathematical 
morphology." In Computer and Communication Engineering. 
International Conference on, pp. 427-432, 2008. 
[4] Z. Zhang, Q. Liu, Y. Wang. "Road Extraction by Deep Residual 
U-Net." IEEE Geoscience and Remote Sensing Letters.  pp.749-753, 
2018. 
[5] Z. Hong, D. Ming, K. Zhou, Y. Guo, T. Lu. "Road Extraction 
From a High Spatial Resolution Remote Sensing Image Based on 
Richer Convolutional Features." IEEE Access, vol 6, pp. 46988-
47000. 2018. 
[6] J. Biagioni, J. Eriksson. "Map inference in the face of noise and 
disparity." In Proceedings of the 20th International Conference on 
Advances in Geographic Information Systems, pp. 79-88, 2012. 
[7] G. Máttyus, W. Luo, R. Urtasun. "DeepRoadMapper: Extracting 
Road Topology From Aerial Images." In Proceedings of the IEEE 
International Conference on Computer Vision, pp. 3438-3446. 2017. 
[8] F. Bastani, S. He, S. Abbar, M. Alizadeh. "RoadTracer: 
Automatic Extraction of Road Networks from Aerial Images." 
In Computer Vision and Pattern Recognition (CVPR). 2018. 
[9] L. Zhou, C. Zhang, M. Wu. "D-LinkNet: LinkNet with 
Pretrained Encoder and Dilated Convolution for High Resolution 
Satellite Imagery Road Extraction." In 2018 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition Workshops (CVPRW), 
pp. 182-186, 2018. 
[10] K. He, X. Zhang, S. Ren, J. Sun. "Deep residual learning for 
image recognition." In Proceedings of the IEEE conference on 
computer vision and pattern recognition, pp. 770-778. 2016. 
[11] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li. "Imagenet: A large-
scale hierarchical image database." In Computer Vision and Pattern 
Recognition. IEEE Conference on, pp. 248-255, 2009. 
[12] J. Shi, C. Tomasi. Good features to track. Cornell University, 
1993. 
[13] M. Haklay, P. Weber. "Openstreetmap: User-generated street 
maps." IEEE Pervas Comput, vol 7, no. 4, pp.12-18, 2008.  
[14] D.P. Kingma, J. Ba. "Adam: A method for stochastic 
optimization." arXiv preprint arXiv:1412.6980, 2014. 

3926


